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FOUNDATIONS OF DATA ENVELOPMENT ANALYSIS FOR

PARETO-KOOPMANS EFFICIENT EMPIRICAL PRODUCTION FUNCTIONS

by

A. Charnes, W.W. Cooper, B. Golany, L. Seiford, J. Stutz

Abstract

The construction and analysis of Pareto-efficient frontier

production functions by a new Data Envelopment Analysis method is

presented in the context of new theoretical characterizations of the

inherent structure and capabilities of such empirical production functions.

Contrasts and connections with other developments, including solutions of

some remaining problems, are made re aspects such as inforatics, economies

of scale, isotonicity and non-concavity, discretionary and non-

discretionary inputs, piecewise linearity, partial derivatives and

Cobb-Douglas properties of the functions. Non-Archimedean constructs are

not required. A. '>. Y-

- Keyv, Words " [

\Pareto-Koopmans Efficiency ,
Efficiency Analysis) .,
Frontier Production Functions5 - "
Data Envelopment Analysis. ." 9 ...Lanld/ar "

Spouial

Original: "An Empirical DEA Production Function" by A. Charnes,
W.W. Cooper & L. Seiford, April 1981.
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INTRODUCTION

Classically, the economic theory of production is heavily based on

the conceptual use of the Pareto-efficiency (or Pareto-optimal) frontier of

production possibility sets to define "the" production function. The work

of R. Shephard [27], [28] under restrictions on the mathematical

structure of production possibility sets and cost relations, developed an

elegant "transform" theory between production aspects and cost aspects [17].

This was applied to various classes of explicitly given parametric functional

forms and problems of statistical estimation of parameters from data were

considered in classical statistical contexts especially by successors like

S. Afriat, D. Aigner, F. Forsund [1, 2, 24].1 These efforts were almost

exclusively for single output functions.

M. J. Farrell in [22] partly responding to the inadequacies of

separate indices of labor productivity, capital productivity, etc., undertook

what he referred to as an "activity analysis" approach2 that could deal more

adequately with the problem. Possibly because of the limitations of the

elaborate matrix inversion routines he was employing, Farrell confined his

numerical examples and discussion to single output situations, although he

did formulate the multiple output case. If anything, the need for being

able to deal directly with multiple outputs has grown ever-more urgent with

the continuing growth of the not-for-profit and service sectors in the

United States and other "western type" economies. As we have elsewhere

1The need for some- method of estimating frontier functions had been
pointed out as early as 1935 by Frisch [25] in his statistical study of
chocolate production in France.

2In the sense of the original work by T. C. Koopmans that is described
in Chapter IX of [12] where it was also accorded an explicit linear programming
formulation and interpretation.

'.]-.......-i,..'"........... , ' ' ' ' -.... ' ' ' '' ................. I
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observed, one can otherwise do almost nothing with important parts of

not-for-profit and governmental activities without becoming involved in

arbitrary weighting schemes. Even attempts at measuring and evaluating

"total factor productivity" will fall short of what is required since this

is inherently a single output concept. Farrell was right, therefore, in

re-orienting the direction of development toward the various types of

efficiencies that he referred to as "technical", "scale", and "allocative

efficiencies".

Building on the individual firm or country (= Decision Making Unit)2

evaluations of Farrell and the engineering ratio idea of efficiency measure

for a single input and output, efficiency analysis in its managerial aspects

and its constructible extensions to multi-input, multi-output situations

was initiated by Charnes, Cooper, and Rhodes in [15] and [16]. Subsequent

extensions and elaborations by the former pair with other students and

colleagues were made in [14], [18], [19], and [20] with more detailed

attention to classical economic aspects and deeper analysis of the produc-

tion function side of the mathematical duality structure and Data Envelopment

Analysis first presented in the original CCR work. The CCR ratio measures

and the variants of Farrell, Shephard, Fare, et al, on the dual linear

programming side require, however, non-Archimedean constructs for rigorous

theory and usage. Their solution methods also do not easily provide impor-

tant needed properties of their associated empirical production functions.

Thus, in this paper we introduce as basic the idea of Pareto

optimality with respect to an empirically defined production possibility set.

ISee Banker, Bowlin., Charnes, and Cooper [5].

2This term was introduced in [15] and contracted to DMU because it
was recognized that something like it was needed to refer to public
sector organizations.

- -- . °% %, ... ° - °%-• % . '. .. : -. *.... 'o"% . °.--. - "" .', .'. . . . . . . . . . . .. .
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We characterize the mathematical structures permitted under our minimal K-

assumptions and contrast these with work by others. Properties such as

isotonicity, non-concavity, economies of scale, piece-wise linearity, Cobb-

Douglas forms, discretionary and non-discretionary inputs are treated through

a new Data Envelopment Analysis method and informatics which permits a

constructive development of an empirical production function and its partial

derivatives without loss of efficiency analysis or use of non-Archimedean

field extensions.

.' 1-

7. . .
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EMPIRICAL FUNCTION SETTING AND GENERATION

By an "empirical" function we shall mean a vector function whose

values are known at a finite number of points and whose values at other

points in its domain are given by linear (usually convex) combinations

of values at known points. The points in the domain are "inputs," the

component values of the vector function "outputs." We shall assume that

inputs are so chosen that convex combinations of input values for each

input are meaningful input values. We assume this for output values as well.

In efficiency analysis, observations are generated by a finite

number of "DMU"s, or "productive," or "response" units, all of which have

the same inputs and outputs. A relative efficiency rating is to be

obtained for each unit. Typically, observations over time will be made

of each unit and the results of efficiency analyses will be employed to

assist in managing each of the units. We assume n units, s outputs and . -

m inputs. The observed values are to be non-negative (sometimes positive)

numbers.

We shall employ the notation X., Y. for respectively the observed

vectors of the inputs and outputs of the jth DMU. By X and Y we shall

mean the matrices whose n column vectors are respectively those of the

n DMU's. We use x, y, A, s to denote column vectors also with .e the column

vector of ones. We use "T" as a superscript to denote the transpose, e.g.

T.
e is the row vector of ones. Point sets are denoted by (capital) script

letters. The inequality symbol between vectors means that inequality

holds for each component.

-. ., .- . -.--... t.-.q'- .S, . . . . . . . '- , . . - -. ., i iI i I



5

A'HYPOGRAPH EMPIRICAL PRODUCTION POSSIBILITY SET

Given the (empirical) points (X.,Y.). j=l,...,n with (mxl) "input"

vectors X. ) 0 and (sxl) "output" vectors Y. ) 0, we define the "empirical

production set" PE to be the convex hull of these points i.e.

n n

(2.1) PE {(xy) x Xj , y Yji, VUJ = 
"= j= 1 " 3

We extend it to our "empirical production possibility set" QE by addir- to

P all points with inputs in P, and outputs not greater than some output

in PE i.e.

(2.2) QE {(xy) x -x , y 4y for some e £E}

Note that QE is contained in (e.g. is smaller than) every production

possibility set heretofore employed, i.e. those studied by Farrell [22],

Shephard [28], Banker, Charnes and Cooper [4], Fare, et al. [21], etc. 'We

also use fewer axioms than the others, including even Banker [3] who, up

to this point in journal publication, had used the most parsimonious axiom

system to characterize the production possibility sets of DEA1. The

Farrell, Shephard, Fare sets are (truncated) cones; the BCC set (when

not also a cone) adds to QE the set

((x,y)) x > , y y y for some ( ) a QE}.

These relations may be visualized in the schematic plot of

Figure 1:

1our usage antedates his since we used this in the Ph.D. and other

work with Rhodes (the "R" of CCR).
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Figure 1I

where QE = PE U A , the BCC set is QEU B, and the Farrell, Shephard, F~re

set is QE U B U C.

Let ',Q denote the sets corresponding to PEand QEwhen only the

output yr is the ordinate. Evidently a frontier function fr (X) is determined 1

by

(2.3) fr(X) = max Y4 for (X,Yr) Ei

Then,

Theorem 0: QEis the hypograph of fr( X) over {x :(x,y) E} •

Proof: The hypograph H4 of fr(X) is the set ~

Let VE denote (x : (x,y) c QE} . It is the domai.i (the input set)

of our empirical frontier functions.--

Theorem 1: A (x) is a concave, piecewise linear function on
QE PE,

se ... QE U B U .- ...C. , . . . . . .... -.. , .. ..- .... - °. - ... , '

:.-..-...-e. .. :' I _ _ , -Q denot th set co re p nd n to P. and whe only'-'- th-e,. ., " -" " "- - - -
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Proof: A necessary and sufficient condition for f (x) to be concave is

that its hypograph is a convex set (cf. Rockefellar [26], or Fenchel Z3]).

The piecewise linearity also follows from the construction of QE by all convex

combinations of the empirical points (X.,Y.), j=1,... ,n.
33 U

We further observe explicitly that no use whatever has been made of

non-negativity of input and output values in the sets, functions or proof

of Theorems 0 and 1. Therefore, they hold without this restriction--a

fact we shall employ elsewhere.

Also, no assumptions have been made about the properties of any

underlying function, or function hypograph, from which the (X.,Yj) of our

empirical construct may be considered samples. Theorem 1 shows, therefore,

that any empirical (maximum) frontier function is the "concave cap" function-

of its graph.

.~~~~~.... •.- ,.... .... --- ,.,,- '-.- - - '"



THE EMPIRICAL PARETO-EFFICIENT PRODUCTION FUNCTION

A Pareto-efficient (ninimum) point for a finite set of functions

g1(x),. ,g,(x) is a point x such that there is no other Doint x in th-

domain of these functions such that

(3.1) gk(x) < gk(x*) , k=l,...,K

with at least one strict inequality. Charnes and Cooper in [5 J, Chapter I)

showed that x* is Pareto-efficient iff x* is an optimal solution to the

mathematical (goal) program1

K
(3.2) min F gk(x) subject to gk(x) < gk(x*) , k=l,...

x k=1

This was employed by Ben-Israel, Ben-Tal and Charnes in [7 ] to develop

the currently strongest necessary and sufficient conditiqns for a Pareto-

minimum in convex programming.

Utilizing (3.2) we can now define and construct, im(or ex-)plicitly

the Pareto-efficient empirical (frontier) production

function. Because of Koopmans' work in this area (see [111), we shall use

interchangeably the designations "Pareto-efficient" and "Pareto-Koopmans

efficienteetc. in this paper. Other usages of (3.2) to generalizations such

as the "functional efficiency" of Charnes and Cooper Ill]will not be

developed here.

First, by (3.2), the Pareto- efficient points among our n

empirical points can be determined. The empirical Pareto-optimal function

is then defined on the convex hull of thefr inputs by convex combinations

of the "output" values. Note that the convex hull of the Pareto-efficient

points might not include all of PE since only the doubled line portion

of the frontier corresponds to Pareto-efficient points.

IFor a formal definition of goal programming and some of its history,

See charnes and Cooper (10)........-A.. 
. . . ., _ -? .. .. T2 ... .. . . . .. . .. .. .. " ? ,. . . . • " ' .w .... . . . , .. .. r.% .r :. -..- ... ,. .. - .. . -. . .- - -. . . .- . .. . . , , V" -
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Since for efficient production we wish to maximize on outputs while

minimizing on inputs, our relevant gk(x) include both outputs and inputs, e.g.

(33) -gk(x )  -xi ,k = s+i, i=1,...,m .

for (x,y) e QE

For the optimization in (3.2) we clearly need only consider (x,y) E PE

rather than QE* Thus the constraint inequalities in (3.2) are for a test

point (x*,y*):

(3.4) y > y* x xX*

and we have, since these are the envelopment constraints of Data Envelopment

Analysis for an observed input vector x and corresponding output vector y

Theorem 2: The envelopment constraints of Data Envelopment Analysis in

production analysis are the Charnes-Cooper constraints of (3.2) for-testing

Pareto-Koopmans efficiency of an empirical production point.

In no way is what we call "Data Envelopment Analysis" restricted to

linear constant returns to scale functions or to truncated cone domains.

Ev (3.2), Data Envelopment Analysis applies to much moregeneral

convex functions, function domains and other situations than the current

empirical production function one.

To test an empirical "input-output" point (X , Y ) for Pareto-Koopmans
0 0

efficiency, the C2 (Charnes and Cooper) test of (3.2) becomes

+ -min -eT yx + e Tx -.-
X,S+, S -  + .'

subject to YX - s = Y

(3.5) -XX -s" = X

e X

X, s ,s 0.-

where X C _X.. n Y [ ,. ,yn]. n-
............................................
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I " I"

x

Figure 3

Informatically, we can do this by applying transformations of

1

form g. (y ) = + (y, -j) with a 20 to obtain possible new facets in

the g( . (Where, = min y

Problems do arise, of course, .on whether one gets spurious

empirical frontier portions in this manner for empirical points which

should "really" be inefficient. Evidently such non-concave portions are

portions of increasing returns to scale if they are truly on the frontier.

...................................................
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we choose the form of the inputs so that an increase in an input should

not decrease the outputs. But even here we need still more to determine

the non-concave portions of an isotonic function. For example, in Figure 2

an isotonic function is plotted together with the resulting concave cap

(large dashed lines) obtained as the empirical function-

y

l

, ~QE I '

_ _ I . x

Figure 2

As suggested in our original (1981) paper I, non-concavity can be

explored by applying (output) component by component -strictly concave

transformations g,., to obtain g,,(y) instead of y. so that g(yI(x)) would

be concave and our plot might look like

1"An Empirical DEA Production Function" by A. Charnes, W.W. Cooper,
and L. Seiford, April 1981, CCS 396, Center for Cybernetic Studies, Uni-
versity of Texas, Austin, Texas.

. . . . . . . _.. . .. ' .'. . . . . .-, . . ." . . . ..". . ..-. . .." l 
I

q
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In~~ gnrlweanx d c c d +
c dfor r £ R+ , where i

In general when an xc > xd  if Y r >Y r fo.eR whr

RUR = (1,2,...,s}, then the cone of isotonic directions (wl,...,Ws) is

specified by

(s~ I [ r Y y r  .y-.
re R+ () re R- (Y r)

Homogeneous production functions play an important role in the

economics literature. Thereby, whether or not a function for which

f(px) = Paf(x), with p > 0, had economies of scale would be decided by the

value of the exponent a. More generally, increasing or decreasing "returns

to scale" would be present respectively, at i if f(px) > pf(x) or

f(p ) < pf(x) for p > 1 at points pR in a small neighborhood of R. The

BCC paper [4] gives a criterion for deciding this (with production possibility

set QEU B UC or QEU B) but does not give us the rates of change.

Because of our preceding theorems, however, we know that empirical

Pareto-efficient functions are c-d-isotonic on facets and concave in each

component function regardless of the nature of the underlying production

possibility set. Thereby, we automatically anticipate lower and lower

Treturns to scale in going from facet to facet with increasing e x. And

our partial derivatives can give us explicitly the rates of change in each

observed facet.

Practically, our choices of inputs are generally made with the

expectation that the underlying Pareto-optimal function is isotonic, i.e.,

. . ~ . . . .. . .
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Now we prove

Theorem 4: If a Pareto-efficient empirical production function has

only a single output,

then it is an isotone function.

Proof: Suppose xa 4 Xb for Pareto-efficient (x ya) and (xb yb)

b bBy definition of Pareto-efficiency for (x yb), some component output
aa b

yj can exceed yb only if some other output yk < y Since there is

only one output, then ya A f(Xa) 4 yb A f(xb).

Thus xa < Xb implies f(xa) fix b) for Pareto-efficient points, i.e. the

isotone property.

QED.

To show that a multiple-output Pareto-efficient production function.

need not. be isotone, consider the following one-input, two-output example

with 3 sample points a, b, c:

a b c

x 1 2 3

Y, 5 2 1

y2  5 7 4

Input-output points a and b are*Pareto-efficient, c is not. We do not have

isotonicity since xa < xb, but fl(xa) =. ya > fI(xb) 0 y.

If now we "project" the outputs of a and b along the direction given
by wI and w2 for Yl and y2 we obtain the single output 5w, + 5w2 for a

and 2w1 + 7w2 for b. Requiring

7w2 +2w ;0 5w2 + 5w.

implies w2 ; 3/2 w1 as the cone of directions (w1, w2 ) which yields an

isotonic relation.

. . . . U-
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Theorem 3: Every facet of the empirical Pareto-efficient function relation

consists of Pareto-efficient input-output points.

Proof: Each facet corresponds to a basic optimal solution to the

following linear program (C2-test) for some sample input-

output point (XO, Yo):

SeT +4 eTs
min -eT s+ -eT s"T-,

-s y0
Y -s = Y

0-XX -s- -X0  .

+0

eX

A, s s 0

where Y (YI "".'.Yn) , X (XV,...,Xn), with optimal s*+=O, s*'=O. Every

(Xj, Y.) in the optimal basis is Pareto-efficient since (1) the optimal dual

evaluators determined by the basic solution do not depend on the right hand

side vector (-Xo, Yo), and (2), replacing (-X0, Yo) by any (-X., Y) in

the basis preserves the feasibility of the basis for solution with the

new right hand side.

Next, if we C2-test any convex combination of the basic (-X., Y.)
T-TT

e.g. (-XB, YB)T 0B with GB ) 0, eT GB - 1 for Pareto-efficiency ad this

reference set, i.e. insert it in place of (-X0, Yo)T, an optimal X* is

then simply GB (plus s ,s 0 0) with this same basis. Thus the whole

facet is Pareto-efficient.

Q.E.D.

....................................... .......-.-.
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(B) Isotonicity and Economies of Scale

To date the structure, or "geometry", of empirical Pareto-efficient

production functions has received little attention. The structure

depends on and varies with the "production possibility" or "reference"

set chosen. Here we make a beginning for our new set QE and leave to

later research more in-depth and broader explorations including those for

other reference sets.

In many practical situations we try to choose inputs and outputs

with the thought that the underlying empirical Pareto-efficient function

should be "isotone" (which means "order-preserving"). By definition a

(vector) function f(x) is isotone if x xb implies f(xa) f(xb).I

What in fact can be the case? We show here that in the single output

situation the empirical Pareto-efficient function is always isotone. The

multiple output situation, however, may only satisfy a weaker function

property which we shall call "c-d-isotone" or "cone-directional-isotone",

i.e. there is a cone of directions in output space on which the outputs

projection is isotone.

Consider first the "facets" of an empirical Pareto-efficient

function for our reference set. These consist of convex combinations of

the Pareto-efficient sample input-output points with respect to this

reference set.

1The mathematical term "isotone" is synonymous with the expression

"monotonically increasing".

7..
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Suppose we run the C2-test with ( as the point being tested. Then

the optimal dual variables corresponding to input i and output y are respectively

(IF) and . Thus, the rate of change of output Y4 with

respect to input xi is simply the negative of the ratio of the optimal dual

xi constraint variable to the optimal dual y. constraint variable! 1

More specifically, all Pareto-efficient (XjYj) of the facet for the

point (x,y) satisfy

(5.3) 0,Ty _ vx - = 0

where (p*T, V*T) are the dual evaluators at an optimal basic solution,

since they do not depend on the C2-test right hand sides. Thereby our

(5.4) F(x,y). = P*Ty - V*Tx - = 0

C l = F/ , -v* = aF/ax i as already stated.

It should be borne in mind, of course, that these rates of change are

valid only for changes which keep one within the facet.

1See also p. 439 in £15) for a discussion which can now relate this
deve-lopment to the ordinary conditions of economic theory for equality
between ratios of marginal productivities and marginal rates of substitution.

• ~- . . . . . . - . . .. . . . . ,-.. . .. . -. . .. . . . .. . -, -,
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INFORMATICS AND FUNCTION PROPERTIES

(A) Partial Derivatives:

The guidance provided by the CCR, BCC, C2S2 formulations does not

include convenient access to the rates of change of the outputs with change

in the inputs. The optimal dual variables in the DEA side linear programming

problems give rates of change of the efficiency measure with changes in inputs

or outputs. The non-Archimedean formulations further may give infinitesimal

rates., which are not easily employed. And, for most of the efficient points

one has non-differentiability because they are extreme points rather than

(relative) interior points. Nevertheless, because of the informatics, e.g.,

computational tactics, we employ in testing via C2 for Pareto-efficiency,

the following constructive method can be employed.

On reaching a non-Pareto efficient point, our software discovers all

the optimal observed points in its facet, hence, implicitly, all the convex combina-

tions which form the facet. Since the Pareto-efficient facet is a linear

surface it is not only differentiable everywhere in its relative interior

but all its partial derivatives are constant throughout the facet. Thus,

we need only obtain these for any relative interior point of the facet to

have them for the whole facet.

Let

(5.1) F(xl,..,xm , y1,. .. ,ys) 0

be the linear equation of the facet. . Since we have sufficient differentia-

bility in the neighborhood of an interior point (.3y), we know .7-

(5.2 _I _ I -

xy

where the right side partial derivatives are also evaluated at ,
• .. .. . . . . ,. . .• . . . . .- . .... 1. .-. 1--.-,....--.'-1-. -,,.'...... ........... 1......-.... .....-

.... 1 ......... .. 1............ .:..-....... •....-.....1.....~.,.... .. .. . . il
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The CCR efficient DMU's are also among the new Pareto-efficient DMU's.

Projection of a non-optimal DMU onto its Pareto-efficient facet is rendered

by

(4.6) xo  xo  s*" Yo Yo + S* :ii"
(4.) 0  X0 -s 0 . 0  s

To achieve a convenient efficiency measure, we modify the functional

by multiplying it by a a > 0 and dividing the s+  and s- by respectively

the entries in Y and X0, e.g.,

(4.7) -aeT D 1 (Y) s+  - 6 eT D
1 (Xo)

where D( (Yo), D 01 X) are diagonal matrices whose diagonals are the

reciprocals of the entries in Yo, Xo respectively. This achieves a units

invariant measure which may be thought of as the logarithm of the efficiency

measure. A S= 10/(m+s) will yield a logarithm between 0 and -10. This

measure might then be called the "efficiency pH" by analogy with the pH of

chemistry.

Our new measure relates to the units invariant multiplicative measure

of Charnes, Cooper, Seiford and Stutz which, as shown in [19], is necessary

and sufficient that the DEA envelopments be piecewise Cobb-Douglas, by con-

sidering the entries in the Xj., Y to be logarithms of the entries in Xj, Y.

which we employ in the multiplicative formulation.
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and "managerial efficiency" in their analysis of programs Follow-Through and

non-Follow-Through. It also shows quantitatively what improvements in inputs

and outputs will (ceteris paribus) bring a DMU to efficient operation. I

Thus, although the relative efficiency measure of an inefficient DMU will

involve the infinitesimal e, non-infinitesimal changes for improvement are

suggested.

Both Farrell and Shepard knew that ratio measures required adjustments

to correctly exhibit inefficiency of the second DMU in examples like the

following 2 input, 1 output, 2 DMU case:

DMU xl x2  y

1 1 2 1

2 1 4 1

Farrell added geometric points at infinity; Shephard simply excluded such

cases without giving a method for their'exclusion. The non-Archimedean

extension in the CCR formulation was introduced to have an algebraically

closed system of linear programming type. Linear programming theory holds

for non-Archimedean as well as Archimedean entries in the vector and matrix

problem data.2

Our new Pareto-efficient DEA method like C2S2 [19] associates facets with

non-optimal (=non-Pareto-efficient) DMU's. Clearly, by the C2-test, DMUo

T *+ T*is Pareto-efficient (Pareto-optimal) iff -e s e s 0, i.e., iff the

2l-distance from (X ,Y ) to the farthest "northwesterly" QE point is zero.

1The analysis in [8 ] shows how one might take account of the possible
effects on other DMUs when one or more of the efficient DMUs is altered.

2See the discussion on p. 756. in [Il].

..
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constraints for an empirical production possibility set of Farrell, Shephard,

etc. cone type 8E U B U C, and, since

(4.4) e - YeTyX- eTxX]

is an equivalent form for the functional, as being a Charnes-Cooper Pareto-

optimality test for (eX ,Yo) over the cone on the (Xj,Y.), j=1,...,n, with

pre-emption on the intensity 6 of input Xo. As mentioned above and shown,
0 *+ 

-

for example, in l4],DMUo is efficient iff e = 1, s = 0, s* = o. -

Re informatics, which are particularly important since all n

efficiency evaluations must be made (i.e., n linear programs must be solved),

the dual problem can be computed exactly (in the base field) as shown in [11],

e.g., with the code NONARC of Dr. I. Ali (Center for Cybernetic Studies, The

University of Texas at Austin), or approximately by using a sufficiently

small numerical value for e. A typical efficient point is designated by

(x,y) in Figure 1.

If a DMU is inefficient, the optimal x > 0 in its DEA problem

(=Charnes-Cooper test) designate efficient DMU's, as do alternate optima.

Thus, a "proper" subset of the efficient DMU's determines the efficiency

value of an inefficient DMU. The convex combinations of this subset are

also efficient. Thereby to each inefficient DMU a "facet" of efficient

DMU's is associated. The transformation

(4.5) X o  e -s Y Y o+ 
..-

0 o 0 0
where the asterisk designates optimality, projects DMUo, i.e., (Xo,Yo), onto

0 0 0
its efficiency facet.

This projection was introduced by Charnes, Cooper and Rhodes [6] to correct

. for differences 'in managerial ability in order to distinguish between "program"

.. 

.

. . ... . ... . . . . . . . . . .
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Employing the Charnes-Cooper transformation of fractional programming I

(4.2) T T T T{T o, TX =1 

0" .V0

we obtain the dual non-Archimedean linear programs

T T + T-
max Y mine -ces+ ce s
I, tV et X, S+, s
subject to =TX 1 YX -s+  Y

00

(4.3) ]TY_ Tx  0eX - XX -s =0

TT +-' :s0TU <-e X, s, s )0-.

TV T ' -e

where X [X I .,X , Y [YJ,... ,Y].

1'* n 1' n

The problem on the right is associated with the origin of the term

"Data Envelopment Analysis" since the minimization (a) envelops the output

vector Y from above and (b) envelops the input vector X from below via
00

the minimizing choice of the scalar value of the intensity e* = min e. The

problem on the left is said to be in efficiency analysis form with the maxi-

mization oriented toward the choice of V and v (called virtual multipliers

or transformation rates) which produces the greatest rate of virtual output

per unit virtual input allowed by the first constraint together with the re-

* quirements (a) vi.rtual output cannot exceed virtual input and (b) all virtual

* transformation rates must be positive.

Although, clearly, no assumptions have been made concerning the

type of functional relations for the input-output pairs (X.,Y.), the mini-

mization program may be recognized as having the Data Envelopment Analysis

.See Charnes and Cooper [9] and S. Schaible [29].

" . .... . ~~...... . . .. ... . . .'



EFFICIENCY ANALYSIS

As mentioned, managerial and program comparison aspects of

efficiency analysis were initiated by Charnes, Cooper and Rhodes in [15],

(16), and [12], through a generalization of the single input, single output

absolute efficiency determination of classical engineering and science to

multi-input, multi-output relative efficiencies of a finite number of

decision-making units "DMU's" (sometimes called i"productive" units or "response"

units). The multi-input, multi-output situations were reduced to "virtual"

single input single output ones through use of virtual multipliers and sums.

Explicitly, the CCR ratio measure of efficiency of the DMU designated "o"

is given by the non-linear, non-convex, non-Archimedean fractional program

(see [141).

Max nTYO

nTy

subject to X 4 1 ,j =,..., n

,.x

n TT(4.1) = n < _EeT

'-i Txo

ir
T

where the entries of the X. and Y. are assumed positive, e is a non-

Archimedean infinitesimal, eT is a row vector of ones and, by abuse of

T T
notation, has s entries for n m entries for T (XY is one of the

n input-output pairs.

-7 l"..-....-" .........-.................... . . . ..-
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Since -eT(yX-Yo) + eT(X'- Xo) is an equivalent functional (it differs from
00

the above one only be a constant), we can rewrite the problem for convenience

in later comparisons as:

min -eTs+ - es
iX,S+,S -  +
subject to YX - s = 0

(3.6) XX-s = -x

eTX = 1
+ -

with X, s ,s > 0

Here, min -eTs+ - eTs" = -eTs+* - eTs -* = 0 if and only if Y0 X0 is

Pareto-Koopmans efficient. 1 This is the new DEA form for obtaining and

characterizing the production possibility set QE via PE" The linear program

(3.6) maximizes the I1-distance of a point in PE to (Xo, Y0). We solve (3.6)

for all n DMU's considered as (Xo, Yo). From these we get the efficient

and non-efficient points and can construct as desired the points of PE by

convex combinations. As we shall see later, other variations of QE can be

accommodated easily by simple modifications of or additions to the constraints

on X. Its informatics and software, as developed by I. Ali and J. Stutz of

the Center for Cybernetic Studies of The University of Texas at Austin,

involve only minor modification from that of Charnes, Cooper, Seiford and

Stutz [19].

ISee Chapter IX in [11].

Z!!
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(C) Discretionary and Non-Discretionary Inputs:

In a number of practical applications,certain relevant inputs, e.g.,

unemployment rate, population, median income, are not subject to "discre-

tionary" change by the decision-makers of decision-making units. These are

called "non-discretionary" inputs.1 They are important in influencing the

outputs and in furnishing the reference background in terms of which units'

efficiency is rated. Not infrequently the facet associated with an

inefficient unit has the same values for the non-discretionary inputs, in

which case there is no problem with the rating assigned. If not, however,

to obtain more meaningful ratings we can add constraints on X to those in

(3.5) which require the non-discretionary inputs to be the same as that of the

unit being evaluated. Thereby, a more meaningful rating will be attained.

1See [13].
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CONCLUSIONS

We have shown how direct application of the Charnes-Cooper test

for Pareto optimality leads to a simpler and more robust method, efficiency

pH, encompassing all previous ones for ascertaining "efficiency." Further,

Pareto-efficiency characterizations and constructions of empirical production

functions restrict us methodologically to exploration of such functions

by means of concave caps. Economies of scale from these

thereby expectedly decrease with increase in the magnitude of the input

vectors. Use of transformations of outputs, as we suggest, can uncover

non-concave regions of the underlying production function where substantial

economies of scale may prevail. Our new informatics device and theory

of the use of the facet average (or barycenter) also constructively

furnishes quantitative estimates of the rates of change of outputs with

respect to inputs which have not been available previously. These new

devices, as with other usages of empirical functions, suggest important

new areas for development of statistical theory to distinguish between

true properties and sampling "accidents." The vital importance of further

development of the informatics of solution of systems of adaptively

developed linear programming problems for Pareto-efficient constructions

should also be clear.

.................

. . . ,.
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